Jump to content

Polycatenane

From Wikipedia, the free encyclopedia
Polycatenane model.[1]

A polycatenane is a chemical substance that, like polymers, is chemically constituted by a large number of units.[2] These units are made up of concatenated rings into a chain-like structure.

It consists of mechanically linked catenane[3] structures, via topological Hopf links, resulting in a higher dimensionality than the repeating unit.[4][5] They are a class of catenanes where the number of macrocycles is greater than two and as catenanes they belong to the big family of mechanically interlocked molecular architectures (MIMAs).[6][7][8]

Reciprocal degree of motion of polycatenanes rings.

The characteristic feature of a polycatenane compound, that distinguishes it from other polymers, is the presence of mechanical bonds in addition to covalent bonds.[7][9][10] The rings in this chain-like structure can be separated only when high energy is provided to break at least a covalent bond of the macrocycle. [n]-Catenanes (for large n), which consist solely of the mechanically interlocked cyclic components, can be viewed as “optimized” polycatenanes. The main difference between poly-[2]-catenanes and poly-[n]-catenanes is the repeating unit, as a monomer is for the polymer.[11][1][12] In the first case the monomer is made of two interlocked rings that repeat continuously in the final polycatenane, while in the latter case there is only one ring that repeat the interlocking process for a large number of times. If the rings of the polycatenane are all of the same type, it can be defined as a homocatenane while if the subunits are different it is defined as heterocatenane.

As a chain, the degree of motion of these structures is very high, greater than the one of a usual polymer, because the rings possess a reciprocal rotational, elongational and rocking motion.[1] This flexibility is retained even if the macrocycles themselves are very rigid units, because the mobility is given by the ability of the rings to move with respect to each other. This mobility influences the final properties of the material (mechanical, rheological and thermal), and provides a dynamic behavior.[13]

Classification

[edit]
Four classes of polycatenanes

Depending on the location of the catenane structures in the polymer chain, the polycatenanes can be divided into main-chain polycatenanes and side-chain polycatenanes.[2][7][14]

Main-chain polycatenanes are linear catenanes in which the rings are interlocked in a large number of units. They can also be a series of oligomers linked physically even if not interlocked together. The stability of the structure is not only given by mechanical bonds but also hydrogen bonds and π-π interactions between the rings.[2]

On the other hand, the side-chain polycatenanes are polycatenanes with ramifications where more oligomers are connected on the same cycle with respect to the main backbone. This type of catenane is synthesised, functionalising the macrocycles so that there is directionality with the possibility to control the ramification.[2]

There are other types of polycatenanes like the ones based on cyclic polymers, where the macrocyles are interlocked to the cyclic polymers, or the polycatenane networks, where catenanes are interlocked into a net.[15][16]

Catenated nanocages

[edit]

The basic unit of the polycatenane can differ from the relatively simple organic macrocycle. When organic and inorganic building blocks come together, they can form coordination cages (or macromolecular cages) that can interlock with one another to form a polycatenane structure.[17] The mechanism is still unexplored but generally the subunits self-assemble into a 0D cage and, in a concerted process, interlock together into a linear or more intricate catenane structure.[18][19][20][21][22][23] Sometimes the catenated cages structure is more stable with respect to the monomeric cage state, and it can be formed passing through a favored reaction intermediate.[24] The synthesis can follow a statistical or a directed routes, forming more or less product, but there are some cases when post-synthetic modifications can increase the product yields.[25][26] Catenated cages can be applied in a wide range of application due to the high presence of voids.[27][28][29]

Synthesis and applications

[edit]

Synthesis

[edit]

The synthesis of polycatenanes is considered a challenging task with most of the reported examples being in the solution state and very few in the solid state.[30] The formation of poly-[2]-catenanes can be achieved by polymerisation of functionalised [2]-catenanes.[31] Also the synthesis of [3]-catenanes, [5]-catenanes, [6]-catenanes and [7]-catenanes is reported in many articles.[32][33] The synthesis of poly-[n]-catenanes has instead some practical issues.[34][35] To this purpose, molecular dynamic simulation is very used as a tool for the design of the optimal synthetic path toward the desired product by predicting the final topology.[36][13]

There are two main synthetic routes: the statistical approach and the template-directed approach.[37]

The statistical approach is based on a stochastic methodology.[38][39] When the reactants are together, there is a probability that they will fit together first and then close on top of each other in a process of cyclisation. The catenation of two rings into a catenane is already complex, thus, as expected, the interlocking of multiple cycles into a polycatenane is statistically improbable. Being an unfavored entropically process the product is obtained in very small amounts. Also, the cyclisation process requires high dilutions, but the elongation of the chain is favored at high concentrations, making the synthesis even more difficult.[38][39]

Example of template-directed clipping approach for the synthesis of catenanes.[31]

The template-directed approach is based on the host-guest interactions that can direct the cyclisation of pre-organised linear unit upon the existing macrocycle.[37][31] These interactions can be hydrogen bonds, π-π interactions, hydrophobic interactions or metal ions coordinations. In this way the synthesis can be enthalpy-driven, obtaining quantitative results.[37][31]

The yield and selectivity are restrained by the kinetic or thermodynamic control of the reaction.[40]

Generally the kinetic control induces the formation of a product after short reaction times because it is favoued by irreversible reactions (or equilibrium reaction moved very much toward the formation of the products).[25] The thermodynamic product is obtained for longer reaction times for reversible processes.[41] In this case the units have the time to rearrange themselves toward the most stable state, in a sort of error-checking process. This is obtained by breaking covalent and coordination bonds and forming the most stable ones.[42]

Applications

[edit]

Given that polycatenanes are a relatively recent field of study, the properties of these materials are not yet fully explored and understood.[43] The type of bonds that characterize the whole structure (covalent, non-covalent or mechanical bonds), the degree of mobility of the chain, the interactions between different chains and the fraction of voids of the catenanes are all factors that contribute to the final properties. As they can be strictly related to the family of metal-organic frameworks, the catenanes share all the potential applications of this class of compounds. Among these, there are applications in biomedicine, catalysis, as conducting bridges or in electronic devices, sensing or in recent fields like molecular machines.[44][45][46][47][48][49][50]

See also

[edit]

References

[edit]
  1. ^ a b c Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong; Wojtecki, Rudy J.; de Pablo, Juan J.; Hore, Michael J. A.; Rowan, Stuart J. (2017-12-15). "Poly[ n ]catenanes: Synthesis of molecular interlocked chains". Science. 358 (6369): 1434–1439. Bibcode:2017Sci...358.1434W. doi:10.1126/science.aap7675. ISSN 0036-8075. PMID 29192134. S2CID 667951.
  2. ^ a b c d Z.Niu and Harry.W. Gibson (2009). "Polycatenanes". Chem. Rev. 109 (11): 6024–6046. doi:10.1021/cr900002h. PMID 19670889.
  3. ^ Gil-Ramírez, Guzmán; Leigh, David A.; Stephens, Alexander J. (2015-05-07). "Catenanes: Fifty Years of Molecular Links". Angewandte Chemie International Edition. 54 (21): 6110–6150. doi:10.1002/anie.201411619. ISSN 1433-7851. PMC 4515087. PMID 25951013.
  4. ^ Flapan, Erica (2000). When Topology Meets Chemistry: A Topological Look at Molecular Chirality. Outlooks. Cambridge: Cambridge University Press. doi:10.1017/cbo9780511626272. ISBN 978-0-521-66254-3.
  5. ^ Carlucci, Lucia; Ciani, Gianfranco; Proserpio, Davide M. (November 2003). "Polycatenation, polythreading and polyknotting in coordination network chemistry". Coordination Chemistry Reviews. 246 (1–2): 247–289. doi:10.1016/s0010-8545(03)00126-7. ISSN 0010-8545.
  6. ^ Davis, Frank; Higson, Séamus (2011). Macrocycles: construction, chemistry, and nanotechnology applications. Chichester: Wiley. ISBN 978-1-119-98993-6.
  7. ^ a b c Fang, Lei; Olson, Mark A.; Benítez, Diego; Tkatchouk, Ekaterina; Goddard III, William A.; Stoddart, J. Fraser (2010). "Mechanically bonded macromolecules". Chem. Soc. Rev. 39 (1): 17–29. doi:10.1039/B917901A. ISSN 0306-0012. PMID 20023833.
  8. ^ Amabilino, David B.; Stoddart, J. Fraser (December 1995). "Interlocked and Intertwined Structures and Superstructures". Chemical Reviews. 95 (8): 2725–2828. doi:10.1021/cr00040a005. ISSN 0009-2665.
  9. ^ Stoddart, J. Fraser (2009). "The chemistry of the mechanical bond". Chemical Society Reviews. 38 (6): 1802–1820. doi:10.1039/b819333a. ISSN 0306-0012. PMID 19587969.
  10. ^ Bruns, Carson J.; Stoddart, J. F.; Stoddart, James Fraser (2017). The nature of the mechanical bond: from molecules to machines. Hoboken, New Jersey: John Wiley & Sons. ISBN 978-1-119-04400-0.
  11. ^ Xing, Hao; Li, Zhandong; Wang, Wenbo; Liu, Peiren; Liu, Junkai; Song, Yu; Wu, Zi Liang; Zhang, Wenke; Huang, Feihe (February 2020). "Mechanochemistry of an Interlocked Poly[2]catenane: From Single Molecule to Bulk Gel". CCS Chemistry. 2 (1): 513–523. doi:10.31635/ccschem.019.20190043. ISSN 2096-5745. S2CID 219164409.
  12. ^ Geerts, Yves (1999-06-24), Sauvage, J.-P.; Dietrich-Buchecker, C. (eds.), "Polycatenanes, Poly[2]catenanes, and Polymeric Catenanes", Molecular Catenanes, Rotaxanes and Knots (1 ed.), Wiley, pp. 247–276, doi:10.1002/9783527613724.ch10, ISBN 978-3-527-29572-2, retrieved 2023-07-05
  13. ^ a b Rauscher, Phillip M.; Schweizer, Kenneth S.; Rowan, Stuart J.; de Pablo, Juan J. (2020-06-07). "Dynamics of poly[ n ]catenane melts". The Journal of Chemical Physics. 152 (21): 214901. Bibcode:2020JChPh.152u4901R. doi:10.1063/5.0007573. ISSN 0021-9606. PMID 32505155. S2CID 219537697.
  14. ^ Encyclopedia of polymeric nanomaterials. Vol. 3: Pm - Z. Heidelberg Berlin: Springer-Reference. 2015. pp. 1796–1802. ISBN 978-3-642-29647-5.
  15. ^ Semlyen, J. A.; Wood, B. R.; Hodge, P. (September 1994). "Cyclic polymers: past, present and future". Polymers for Advanced Technologies. 5 (9): 473–478. doi:10.1002/pat.1994.220050902.
  16. ^ Hart, Laura F.; Lenart, William R.; Hertzog, Jerald E.; Oh, Jongwon; Turner, Wilson R.; Dennis, Joseph M.; Rowan, Stuart J. (2023-06-07). "Doubly Threaded Slide-Ring Polycatenane Networks". Journal of the American Chemical Society. 145 (22): 12315–12323. doi:10.1021/jacs.3c02837. ISSN 0002-7863. PMID 37227296. S2CID 258888690.
  17. ^ Frank, Marina; Johnstone, Mark D.; Clever, Guido H. (2016-09-26). "Interpenetrated Cage Structures". Chemistry - A European Journal. 22 (40): 14104–14125. doi:10.1002/chem.201601752. PMID 27417259.
  18. ^ Constable, Edwin C.; Zhang, Guoqi; Housecroft, Catherine E.; Zampese, Jennifer A. (2011). "Zinc(ii) coordination polymers, metallohexacycles and metallocapsules—do we understand self-assembly in metallosupramolecular chemistry: algorithms or serendipity?". CrystEngComm. 13 (22): 6864. doi:10.1039/c1ce05884c. ISSN 1466-8033.
  19. ^ Westcott, Aleema; Fisher, Julie; Harding, Lindsay P.; Rizkallah, Pierre; Hardie, Michaele J. (2008-02-16). "Self-Assembly of a 3-D Triply Interlocked Chiral [2]Catenane". Journal of the American Chemical Society. 130 (10): 2950–2951. doi:10.1021/ja8002149. ISSN 0002-7863. PMID 18278922.
  20. ^ Kuang, Xiaofei; Wu, Xiaoyuan; Yu, Rongmin; Donahue, James P.; Huang, Jinshun; Lu, Can-Zhong (2010-04-11). "Assembly of a metal–organic framework by sextuple intercatenation of discrete adamantane-like cages". Nature Chemistry. 2 (6): 461–465. Bibcode:2010NatCh...2..461K. doi:10.1038/nchem.618. ISSN 1755-4330. PMID 20489714.
  21. ^ Heine, Johanna; Schmedt auf der Günne, Jörn; Dehnen, Stefanie (2011-07-06). "Formation of a Strandlike Polycatenane of Icosahedral Cages for Reversible One-Dimensional Encapsulation of Guests". Journal of the American Chemical Society. 133 (26): 10018–10021. doi:10.1021/ja2030273. ISSN 0002-7863. PMID 21657228.
  22. ^ Torresi, Stefano; Famulari, Antonino; Martí-Rujas, Javier (2020-05-20). "Kinetically Controlled Fast Crystallization of M 12 L 8 Poly-[ n ]-catenanes Using the 2,4,6-Tris(4-pyridyl)benzene Ligand and ZnCl 2 in an Aromatic Environment". Journal of the American Chemical Society. 142 (20): 9537–9543. doi:10.1021/jacs.0c03319. ISSN 0002-7863. PMID 32343571. S2CID 216646315.
  23. ^ Marti-Rujas, J.; Famulari, A. (2024). "Polycatenanes Formed of Self-Assembled Metal Organic Cages". Angewandte Chemie International Edition. 63 (34): e202407626. doi:10.1002/anie.202407626. PMID 38837637.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. ^ Xu, Shijun; Li, Pan; Li, Zi-Ying; Yu, Chunyang; Liu, Xiaoyun; Liu, Zhiqiang; Zhang, Shaodong (July 2021). "Catenated Cages Mediated by Enthalpic Reaction Intermediates". CCS Chemistry. 3 (7): 1838–1850. doi:10.31635/ccschem.020.202000360. ISSN 2096-5745. S2CID 224904423.
  25. ^ a b Wu, Yong; Guo, Qing-Hui; Qiu, Yunyan; Weber, Jacob A.; Young, Ryan M.; Bancroft, Laura; Jiao, Yang; Chen, Hongliang; Song, Bo; Liu, Wenqi; Feng, Yuanning; Zhao, Xingang; Li, Xuesong; Zhang, Long; Chen, Xiao-Yang (2022-03-22). "Syntheses of three-dimensional catenanes under kinetic control". Proceedings of the National Academy of Sciences. 119 (12): e2118573119. Bibcode:2022PNAS..11918573W. doi:10.1073/pnas.2118573119. ISSN 0027-8424. PMC 8944772. PMID 35290119.
  26. ^ Li, Pan; Xu, Shijun; Yu, Chunyang; Li, Zi-Ying; Xu, Jianping; Li, Zi-Mu; Zou, Lingyi; Leng, Xuebing; Gao, Shan; Liu, Zhiqiang; Liu, Xiaoyun; Zhang, Shaodong (2020-04-27). "De Novo Construction of Catenanes with Dissymmetric Cages by Space-Discriminative Post-Assembly Modification". Angewandte Chemie International Edition. 59 (18): 7113–7121. doi:10.1002/anie.202000442. ISSN 1433-7851. PMID 32003925. S2CID 210982600.
  27. ^ Cheng, Liwei; Liang, Chengyu; Liu, Wei; Wang, Yaxing; Chen, Bin; Zhang, Hailong; Wang, Yanlong; Chai, Zhifang; Wang, Shuao (2020-09-03). "Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection". Journal of the American Chemical Society. 142 (38): 16218–16222. doi:10.1021/jacs.0c08117. ISSN 0002-7863. PMID 32881493. S2CID 221496523.
  28. ^ Marti-Rujas, Javier; Elli, Stefano; Famulari, Antonino (2023). "Kinetic trapping of 2,4,6-tris(4-pyridyl)benzene and ZnI2 into M12L8 poly-[n]-catenanes using solution and solid-state processes". Scientific Reports. 13 (1): 5605 (2023). doi:10.1038/s41598-023-32661-x. PMC 10076325. PMID 37019947.
  29. ^ Marti-Rujas, J. (2023). "Connecting metal–organic cages (MOCs) for CO2 remediation". Material Advances. 4 (19): 4333–4343. doi:10.1039/D3MA00477E.
  30. ^ Marti-Rujas, J.; Elli, S.; Sacchetti, A.; Castiglione, F. (2022). "Mechanochemical synthesis of mechanical bonds in M12L8 poly-[n]-catenanes". Dalton Transactions. 51 (1): 53–58. doi:10.1039/D1DT03158A. PMID 34889335.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ a b c d Li, Ziyong; Liu, Wenju; Wu, Jishan; Liu, Sheng Hua; Yin, Jun (2012-08-17). "Synthesis of [2]Catenanes by Template-Directed Clipping Approach". The Journal of Organic Chemistry. 77 (16): 7129–7135. doi:10.1021/jo3012804. ISSN 0022-3263. PMID 22839768.
  32. ^ Fujita, Makoto; Ogura, Katsuyuki (March 1996). "Self-assembling [2]catenanes: molecular magic rings". Supramolecular Science. 3 (1–3): 37–44. doi:10.1016/0968-5677(96)00004-1. ISSN 0968-5677.
  33. ^ Amabilino, David B.; Ashton, Peter R.; Balzani, Vincenzo; Boyd, Sue E.; Credi, Alberto; Lee, Ju Young; Menzer, Stephan; Stoddart, J. Fraser; Venturi, Margherita; Williams, David J. (1998-04-28). "Oligocatenanes Made to Order1". Journal of the American Chemical Society. 120 (18): 4295–4307. doi:10.1021/ja9720873. ISSN 0002-7863.
  34. ^ Clarkson, Guy J; Leigh, David A; Smith, Richard A (1998-12-01). "From catenanes to mechanically-linked polymers". Current Opinion in Solid State and Materials Science. 3 (6): 579–584. Bibcode:1998COSSM...3..579C. doi:10.1016/S1359-0286(98)80029-6. ISSN 1359-0286.
  35. ^ Liu, Guancen; Rauscher, Phillip M.; Rawe, Benjamin W.; Tranquilli, Marissa M.; Rowan, Stuart J. (2022). "Polycatenanes: synthesis, characterization, and physical understanding". Chemical Society Reviews. 51 (12): 4928–4948. doi:10.1039/D2CS00256F. ISSN 0306-0012. PMID 35611843. S2CID 249045606.
  36. ^ Lei, Huanqing; Zhang, Jianguo; Wang, Liming; Zhang, Guojie (2021-01-06). "Dimensional and shape properties of a single linear polycatenane: Effect of catenation topology". Polymer. 212: 123160. doi:10.1016/j.polymer.2020.123160. ISSN 0032-3861. S2CID 228825803.
  37. ^ a b c Raymo, Françisco M.; Stoddart, J. Fraser (1999-06-11). "Interlocked Macromolecules". Chemical Reviews. 99 (7): 1643–1664. doi:10.1021/cr970081q. ISSN 0009-2665. PMID 11849006.
  38. ^ a b Agam, Giora; Zilkha, Albert (August 1976). "Synthesis of a catenane by a statistical double-stage method". Journal of the American Chemical Society. 98 (17): 5214–5216. doi:10.1021/ja00433a027. ISSN 0002-7863.
  39. ^ a b Harrison, I. T. (1972). "The effect of ring size on threading reactions of macrocycles". Journal of the Chemical Society, Chemical Communications (4): 231–232. doi:10.1039/c39720000231. ISSN 0022-4936.
  40. ^ Dichtel, William R.; Miljanić, Ognjen Š.; Zhang, Wenyu; Spruell, Jason M.; Patel, Kaushik; Aprahamian, Ivan; Heath, James R.; Stoddart, J. Fraser (2008-12-16). "Kinetic and Thermodynamic Approaches for the Efficient Formation of Mechanical Bonds". Accounts of Chemical Research. 41 (12): 1750–1761. doi:10.1021/ar800067h. ISSN 0001-4842. PMID 18837521.
  41. ^ Olson, Mark A.; Coskun, Ali; Fang, Lei; Basuray, Ashish N.; Stoddart, J. Fraser (2010-04-19). "Polycatenation under Thermodynamic Control". Angewandte Chemie. 122 (18): 3219–3224. Bibcode:2010AngCh.122.3219O. doi:10.1002/ange.201000421. ISSN 0044-8249.
  42. ^ Sartori, Pablo; Pigolotti, Simone (2015-12-10). "Thermodynamics of Error Correction". Physical Review X. 5 (4): 041039. arXiv:1504.06407. Bibcode:2015PhRvX...5d1039S. doi:10.1103/PhysRevX.5.041039. S2CID 14086928.
  43. ^ Hart, Laura F.; Hertzog, Jerald E.; Rauscher, Phillip M.; Rawe, Benjamin W.; Tranquilli, Marissa M.; Rowan, Stuart J. (2021-02-12). "Material properties and applications of mechanically interlocked polymers". Nature Reviews Materials. 6 (6): 508–530. Bibcode:2021NatRM...6..508H. doi:10.1038/s41578-021-00278-z. ISSN 2058-8437. OSTI 1812714. S2CID 231905660.
  44. ^ Riebe, Jan; Niemeyer, Jochen (2021-10-07). "Mechanically Interlocked Molecules for Biomedical Applications". European Journal of Organic Chemistry. 2021 (37): 5106–5116. doi:10.1002/ejoc.202100749. ISSN 1434-193X. S2CID 238738743.
  45. ^ van Dongen, Stijn F. M.; Cantekin, Seda; Elemans, Johannes A. A. W.; Rowan, Alan E.; Nolte, Roeland J. M. (2014). "Functional interlocked systems". Chem. Soc. Rev. 43 (1): 99–122. doi:10.1039/c3cs60178a. hdl:2066/128395. ISSN 0306-0012. PMID 24071686. S2CID 11174780.
  46. ^ Langton, Matthew J.; Beer, Paul D. (2014-04-07). "Rotaxane and Catenane Host Structures for Sensing Charged Guest Species". Accounts of Chemical Research. 47 (7): 1935–1949. doi:10.1021/ar500012a. ISSN 0001-4842. PMID 24708030.
  47. ^ Evans, Nicholas H.; Beer, Paul D. (2014). "Progress in the synthesis and exploitation of catenanes since the Millennium". Chemical Society Reviews. 43 (13): 4658–4683. doi:10.1039/c4cs00029c. ISSN 0306-0012. PMID 24676138.
  48. ^ Chen, Hongliang; Fraser Stoddart, J. (September 2021). "From molecular to supramolecular electronics". Nature Reviews Materials. 6 (9): 804–828. Bibcode:2021NatRM...6..804C. doi:10.1038/s41578-021-00302-2. ISSN 2058-8437. S2CID 232766622.
  49. ^ Caballero, Antonio; Zapata, Fabiola; Beer, Paul D. (September 2013). "Interlocked host molecules for anion recognition and sensing". Coordination Chemistry Reviews. 257 (17–18): 2434–2455. doi:10.1016/j.ccr.2013.01.016. ISSN 0010-8545.
  50. ^ Aprahamian, Ivan (2020-03-03). "The Future of Molecular Machines". ACS Central Science. 6 (3): 347–358. doi:10.1021/acscentsci.0c00064. ISSN 2374-7943. PMC 7099591. PMID 32232135. S2CID 214703064.

Further reading

[edit]
[edit]